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Abstract
Given a polygonal closed curve on a lattice or space group, we describe a
method for computing the writhe of the curve as the average of weighted
projected writhing numbers of the polygon in a few directions. These directions
are determined by the lattice geometry, the weights are determined by areas of
regions on the unit 2-sphere, and the regions are formed by the tangent indicatrix
to the polygonal curve. We give a new formula for the writhe of polygons on
the face centred cubic lattice and prove that the writhe of polygons on the body
centred cubic lattice, the hexagonal simple lattice, and the diamond space group
is always a rational number, and discuss applications to ring polymers.

PACS numbers: 05.50.+q, 61.50.Ah

1. Introduction

Lattice models of self-avoiding random walks have been extensively used to simulate polymer
chains with volume exclusion (Fuller 1962, Garcia et al 1999, Howard and Duan 1998, 1999,
Janse van Rensburg et al 1993, 1997, Kennedy et al 1994, Lacher and Sumners 1991). These
models are useful in understanding biological and chemical properties of polymer molecules
which are self-entangled or entangled with neighboring molecules. Topological entanglement
(knotting and linking) restricts the number of configurations available to a macromolecule, and
is thus a measure of configurational entropy. It has been found that chemical and rheological
properties such as the quality of crystal molecules and viscosity of polymer fluids are related to
the molecular entanglement (Edwards 1967, Lucas et al 1995, Mandelkern et al 1993, Moroz
and Kamien 1997, Popli and Mandelkern 1987, Vologodskii et al 1974), and while a polymer
ensemble may behave like a gel, a different ensemble may behave like an oil. It is then of
great interest to quantify microscopic entanglement, and if possible, relate it to macroscopic
physical properties of the polymer ensemble, such as the stress–strain curve, rubber elasticity
and various phase change phenomena. The writhing number (or just writhe), which will be
described in the next section, is a geometric measure of self-entanglement. Although this
property was named by Fuller (1971), following the definition of writhing (verb, to twist into
coils or folds), it was Calugareanu (1961) and White (1969) who presented the mathematical
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treatment of this measure and its relation between the geometrical and topological properties
of a closed ribbon (Lk = T w + Wr). Writhe has been used to understand the geometry and
topology of DNA (Arsuaga et al 2005, Bauer et al 1980, Crick 1976, Fuller 1978). Writhe can
indicate chirality of knots, and the presence of knots in a closed circular DNA plasmid can give
information about the mechanism of action of enzymes on the DNA molecule (Sumners 1995).
The packing geometry of DNA in bacteriophage capsids is believed to be writhe-directed and
non-random (Arsuaga et al 2005). The writhe has also been useful in the classification of
protein folds (Rogen and Fain 2003). This paper will focus on computational methods for the
writhe of polygonal closed curves on lattices and space groups.

There are a number interesting results regarding the writhe and spatial conformation of
lattice polygons. For example, the knotting probability of a polygon on the simple cubic lattice
Z3 has exponential approach to unity as the length goes to infinity (Pippenger 1989, Sumners
and Whittington 1988). Janse van Rensburg et al (1993) showed that the expectation of the
absolute value of the writhe 〈|Wr|〉 of polygons in Z3 increases at least as rapidly as

√
n.,

where n is the length of the polygon. In addition, Janse van Rensburg et al (1997) investigated
the mean writhe of a random sample of polygons of fixed knot type in Z3, finding that if the
expected value of the writhe is not zero, then the knot is chiral.

Approximating the writhe of a space curve in general requires choosing a number of planar
projections, computing the projected writhe for each of these projections, and averaging the
results. For polygons on lattices and space groups, the restricted geometry of the lattice or
space group leads to simplification of the writhe calculation, and provides an exact calculation
for the writhe. Lacher and Sumners (1991) provided the first exact computation for the writhe
of closed curves on Z3 as the average of four linking numbers of the polygon with pushoffs in
four specific directions, proving that four times the writhe for closed curves on Z3 is an integer;
Cimasoni (2001) arrived at the same result, and Garcia et al (1999) produced a writhe formula
for the face centred cubic lattice (FCC), proving also that the probability that a polygon on
FCC of length n has irrational writhe tends to one as n tends to infinity. Also Garcia et al
(1999) sketched a proof that for the body centred cubic lattice (BCC), 24 times the writhe is an
integer, and also made comments related to the hexagonal close packing (HCP) space group.

In this paper, we compute the writhe of a polygon on any lattice or space group. The
method is based on the analysis of the tangent indicatrix of the polygonal curve.

Fundamental concepts for this paper as well as the description of the methods and central
theorem are described in section 2. Section 3 gives several results illustrating the writhe of
closed curves on some important lattices and space groups. In section 4, questions and future
directions are proposed.

2. Definitions and known results

A three-dimensional lattice can be defined as an arrangement of points or vertices in a regular
periodic pattern in space, and the combination of all available symmetry operations on lattices
leads to space groups. A simple closed curve (lattice polygon) K on a lattice L is the union of
a finite number of edges e1 = v1v2, e2 = v2v3, . . . , en = vnvn+1 (vn+1 = v1) for vi ∈ L. The
edges of a lattice polygon overlap at most in endpoints and each vertex lies on exactly two
edges.

Given an oriented polygon (knot) K in R3, consider its projection into R2 in the direction
of the vector u ∈ R3. In general, almost all projections will be regular, where at most two
projected edges intersect, and that intersection is transverse. For any regular projection, each
crossing x can be assigned a value of x(u) = ±1 according to the right-hand rule (see figure 1).
Note that the sign of the crossing x does not depend on the orientation chosen for the polygon,
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Figure 1. Positive and negative crossings are determined by the right-hand rule.

because reversing the orientation of the polygon reverses both of the arrows at crossing x,
leaving the sign unchanged. For each vector u, the projected writhing number of K, denoted
by Wr(K, u), is defined as the sum of all values x(u) of the projection of K by u. The writhe
is the average of the projected writhing number of K over every projection and is defined as

Wr(K) = 1

4π

∫
u∈S

Wr(K, u), (2.1)

where S is the unit 2-sphere.
Note that for every crossing x, x(u) = x(−u), so for every regular projection over u,

Wr(K, u) = Wr(K,−u), and we can compute the writhe as the average over any hemisphere:

Wr(K) = 1

2π

∫
u∈ 1

2 S

Wr(K, u). (2.2)

For an oriented polygon K with edges e1, e2, . . . , en, each oriented edge ei determines a
direction. These directions can be interpreted as points e′

1, e
′
2, . . . , e

′
n on S. Given any pair

of distinct consecutive points e′
i , e

′
i+1 on S, consider the arc of great circle Gi on S generated

by the exterior angle formed by edges ei and ei+1. If K is a closed curve then H = ∪Gi is
also a closed curve, and if we reverse the orientation of K, we obtain another closed curve
H ′, which is the antipodal curve of H. The indicatrix IK of a closed curve K is defined as
IK = H ∪H ′, and the complement of the indicatrix S\IK is a finite number of antipodal pairs
of open disjoint connected regions R1, R

′
1, R2, R

′
2, . . . , Rm,R′

m.
Although the indicatrix can be defined for smooth closed curves (Fuller 1971), in this

paper, we discuss only the writhe of polygonal curves on lattices.
The indicatrix of the closed curve K plays an important role in the calculation of the writhe

because it helps to greatly reduce the number of directions u where the writhe changes value.
The importance of the indicatrix is given in the following theorem by Cimasoni (2001).

Theorem 2.1 (Cimasoni). If u1 and u2 are two regular directions which belong to the same
complementary region Ri , then

Wr(K, u1) = Wr(K, u2). (2.3)

Now suppose that R1, R
′
1, R2, R

′
2, . . . , Rm,R′

m are the regions bounded by S\IK with area Ai

respectively. Then for ui ∈ Ri ,

Wr(K) = 1

2π

m∑
i=1

Wr(K, ui)Ai. (2.4)

Definition 2.2. Let L be a lattice or space group in space. The lattice indicatrix IL is defined
as the union of all arcs on great circles on S generated by all the pairs of adjacent oriented
edges ei, ei+1 in L.

Note that the indicatrix of any closed curve in the lattice is contained in the lattice
indicatrix, that is, K ⊂ L ⇒ IK ⊂ IL.

We can also think of IL as a set of vertices and edges on S, where the vertices are given
by the different directions of the edges of L, and the edges on IL are the arcs of great circles



3538 C Laing and D W Sumners

on S produced by the directions of any pair of edges on L. Since the set of edges of a lattice
(space group) generate only a small number of different directions, the corresponding lattice
indicatrix has only a small number of vertices. Now we proceed to discuss the method to
compute the lattice indicatrix for a given lattice.

Let v be a vertex on a lattice L, then the degree m of v is the same as the degree of every
other vertex in L because any element of L is invariant under translation by the primitive unit
vectors. Therefore the lattice indicatrix IL consist of m vertices. To find the edges of IL, we
need to consider all the arcs of great circle produced by the directions of any two adjacent
oriented edges ei , ej of L, where ei starts at v. Given an edge ei = vvi on L, then by excluding
ei , there are m − 1 edges incident to vi , but when two adjacent edges have the same direction,
this results in a single vertex on IL. Hence, for every vertex e′

i on IL, there are m − 2 edges
incident to e′

i . Note that if some vertices e′
i , e

′
j , e

′
k are on the same arc of great circle, then the

edges (if any) between them can overlap.
A difference between lattices and space groups is that a lattice preserves orientation under

translations by its unit vectors, and this property of invariance makes easier to find IL, but on
a space group the orientations can be reversed (see diamond structure in table 1(E)), rotated
or reflected. However, it is known that any space group contains a lattice, hence space groups
preserve repetitive patterns as well, and there are only a finite number of directions that an
edge of any polygonal closed curve in L can take, and this translates into a finite number of
vertices on IL. A similar affirmation follows for a finite and equal number of edges at every
vertex of IL. Once IL is drawn and the regions R1, R2, . . . , Rm, which constitute half of the
sphere, have been identified, we proceed to compute the writhe by using formula (2.4).

3. The writhe of a polygon for some important lattices and a space group

We now produce formulae for the calculation of writhe for a number of lattices and a space
group. The first formula computes the writhe of a polygon in the simple cubic lattice Z3, a
case first solved by Lacher and Sumners (1991) and later by Cimasoni (2001). Because of its
simplicity, it makes an instructive example. The writhe of polygons on the face centred cubic
lattice was studied by Garcia et al (1999), who gave a formula for the writhe and proved that
the writhe can be irrational. We produce a different formula for the writhe on the FCC lattice,
and formulae for the writhe on the body centred cubic lattice, the hexagonal simple lattice
and the diamond space group, proving that the writhe on each of the last three is rational.
We describe the corresponding unit cells (also known as crystallographic unit cell) and their
primitive unit vectors.

3.1. The simple cubic lattice

The unit cell of Z3 consists of a unit cube with vertices at its corners (see table 1(A). The
primitive vectors are given by a = (1, 0, 0), b = (0, 1, 0), c = (0, 0, 1). Since at every vertex
of Z3 there are six different edges with directions ±a,±b,±c, the lattice indicatrix has six
vertices at ±a,±b,±c. Consider the pair of any two adjacent edges on Z3, where the first
edge starts at the origin. It can be found that IZ3 consists of three great circles on S passing
thought the planes XY , YZ and XZ, respectively, which divide the sphere into eight octants
of equal area A = π/2. Because half of those regions are antipodal to the other half, it is
enough to consider the four upper octants, then by theorem 2.3

Wr(K) = 1

2π

4∑
i=1

Wr(K, ui)π/2 = 1

4

4∑
i=1

Wr(K, ui), (3.1)
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Table 1. Lattice structures and space groups with their corresponding lattice indicatrices and
writhe formulae.

Lattice or space group 
unit cell 

Lattice indicatrix Writhe formula 

A.     Simple cubic 

 

3Z
I  

 

 
 
 

∑
=

=
4

1

),(
4

1
)(

i
iuKWrKWr  

B.    Body centred cubic 

          

BCCI  

 

 
 
 

∑
=

=
12

1

),(
12

1
)(

i
iuKWrKWr  

C.   Face centred cubic 

   

FCCI  

 

,),(
2

)(
4

1
∑

=

=
i

iuKWrKWr
π

α

∑
=

+
12

1

),(
2 j

jvKWr
π
β

 

where πα −= − 3sec3 1

and /23 πβ =+ α

D. Hexagonal simple 

    

HSI  

 

 
 
 

∑
=

=
6

1

),(
6

1
)(

i
iuKWrKWr  

E. Diamond 

         

DI  

 

 

 
 
 

∑
=

=
3

1

),(
3

1
)(

i
iuKWrKWr  

where ui are directions taken from vectors on the four upper octants, respectively. The values
of ui as (±1/

√
3,±1/

√
3, 1/

√
3) will work. From here we conclude that for any closed curve

K on Z3, 4Wr(K) is an integer.
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3.2. Body centred cubic lattice

In the BCC, a unit cell is characterized by a unit cube with each corner vertex adjacent to
a vertex on the centre of the cube (table 1(B)). The primitive vectors are a = (

1
2 , 1

2 , 1
2

)
,

b = (
1
2 ,− 1

2 , 1
2

)
, c = (− 1

2 , 1
2 , 1

2

)
and d = (− 1

2 ,− 1
2 , 1

2

)
, each edge has length

√
3/2, thus the

vertices at each corner do not touch each other by an edge. Because at each vertex there are
edges in the directions of ±a,±b,±c and ±d. The lattice indicatrix then has eight vertices
± a

‖a‖ ,± b
‖b‖ ,± c

‖c‖ and ± d
‖d‖ , each vertex has 8 − 2 = 6 edges, so each vertex connects to

every other except its antipodal and itself. Therefore, IBCC consists of six great circles on S.
The lattice indicatrix IBCC divides half of S into 12 spherical triangles of equal area π/6, and
the writhe formula is the following:

Theorem 3.2.1. The writhe of a polygon K on the BCC lattice is given by

Wr(K) = 1

12

12∑
i=1

Wr(K, ui), (3.2)

where the vectors ui are taken from the regions Ri on a half of the sphere. A choice of the vectors
ui is

(±√
10

10 , 0, 3
√

10
10

)
,
(
0,±

√
10

10 , 3
√

10
10

)
,
(

3
√

10
10 , 0,±

√
10

10

)
,
(

3
√

10
10 ,±

√
10

10 , 0
)
,
(±√

10
10 , 3

√
10

10 , 0
)
,(

0, 3
√

10
10 ,±

√
10

10

)
.

Thus, 12Wr(K) is an integer. Note that this is an improvement to the result from Garcia
et al (1999), who proved that 24Wr(K) is an integer.

3.3. Face centred cubic lattice

The FCC is composed of a unit cube with vertices at each corner and at the centre of each face
(table 1(C)). A unit cell is characterized by the vectors a1 = (

1
2 , 1

2 , 0
)
, a2 = (− 1

2 , 1
2 , 0

)
, a3 =(

1
2 , 0, 1

2

)
, a4 = (− 1

2 , 0, 1
2

)
, a5 = (

0, 1
2 , 1

2

)
, and a6 = (

0,− 1
2 , 1

2

)
. Every vertex on the FCC

has 12 edges in the directions ±ai, 1 � i � 6, and therefore the lattice indicatrix contains 12
vertices given by ± ai

‖ai‖ . To find the edges we consider the directions of any pair of consecutive
edges ek, ek+1, where ek starts at the origin. The result is a set of seven great circles that divides
every octant of the sphere into four triangles, one of area α = 3 sec−1 3 − π and the other
three of equal area β, where 3β + α = π/2.

Theorem 3.3.1. The writhe of any polygon K on the FCC lattice is given by

Wr(K) = 1

2π


α

4∑
i=1

Wr(K, ui) + β

12∑
j=1

Wr(K, vj )


 , (3.3)

where the vectors ui and vi are taken from the regions (on the upper half sphere) Ri and Rj

of area α and β, respectively.
For instance, we can take

(± 3
√

22
22 ,± 3

√
22

22 ,
√

22
11

)
for the vectors ui , for the vectors vj ,(±√

30
6 ,±

√
30

30 ,
√

30
15

)
,
(±√

30
30 ,±

√
30
6 ,

√
30

15

)
, and

(±√
38

38 ,±
√

38
38 , 3

√
38

19

)
. An interesting fact is that

since α is an irrational number that is not a multiple of π (Garcia et al 1999), then the writhe
can have an irrational value. Although this improved writhe formula is different from the
formula found by Garcia et al (1999), both formulae give the same result for the writhe.

3.4. Hexagonal simple lattice

The unit cell is characterized by the vectors a = (2, 0, 0), b = (1,
√

3, 0), c = (−1,
√

3, 0),
d = (0, 0, 2). Every vertex on the lattice HS has eight edges with directions. The lattice
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indicatrix IHS consist of one great circle C1 on the plane XY , and three great circles C2, C3, C4

perpendicular to XY passing through the point a
‖a‖ ,

b
‖b‖ and c

‖c‖ , respectively and passing all

through the point d
‖d‖ (table 1(D)). IHS divides the upper half of S into six regions of equal

area A = π/3 and the writhe formula is the following.

Theorem 3.4.1. The writhe of any polygon K on the HS lattice is given by

Wr(K) = 1

6

6∑
i=1

Wr(K, ui), (3.4)

where ui are directions taken from the six upper regions of the sphere, respectively.
The choice of the vectors ui as

(± 3
√

7
14 ,

√
21

14 , 2
√

7
7

)
,
(
0,±

√
21
7 , 2

√
7

7

)
and

(± 3
√

7
14 ,−

√
21

14 , 2
√

7
7

)
,

will work. Also, 6Wr(K) is an integer.

3.5. Diamond space group

The diamond space group (D) consists of two interpenetrating FCCs, displayed along the body
diagonal of the cubic cell by one quarter of the length of the diagonal (table 1(E)). The space is
characterized by the vectors a = (

1√
3
, 1√

3
, 1√

3

)
, b = (− 1√

3
, 1√

3
, 1√

3

)
, c = (

1√
3
,− 1√

3
, 1√

3

)
and d = (

1√
3
, 1√

3
,− 1√

3

)
. Every vertex has four edges in the directions a, b, c, d or

−a,−b,−c,−d, and every pair of adjacent vertices have the edges in inverted directions
from each other, therefore D is not a lattice but a space group. However, note that for every
curve in D, the closed curve H ′ (described in section 2) is antipodal to the curve H that runs
in the opposite direction, therefore its indicatrix is still I = H ∪ H ′. In general, the lattice
indicatrix consists of eight vertices ±a,±b,±c,±d, and together with the set of edges on IL,
makes a spherical cube as shown in table 1(E). Therefore, S is divided into six regions Ri each
of equal area 2π/3, and the writhe formula is the following.

Theorem 3.5.1. The writhe of any polygon K on the diamond structure D is given by

Wr(K) = 1

3

3∑
i=1

Wr(K, ui). (3.5)

For instance, the vectors u1 = (1, 0, 0), u2 = (0, 1, 0) and u3 = (0, 0, 1) can be chosen. Also,
3Wr(K) is an integer.

4. Conclusions and future directions

Table 1 shows examples of lattices (and one space group) together with their corresponding
lattice indicatrix curves and the formulae which give an exact computation for the writhe of
a polygonal closed curve on each lattice (space group). We note that the size and shapes of
the regions given by IL varies among lattices. The FCC lattice, for instance, shows that not
every region has the same area, and the diamond space group shows that not every region
is a spherical triangle. Garcia et al (1999) made interesting comments associated with the
regularity of the vertex figure. If the vertex figure is regular, then each vertex will be surrounded
by congruent 3-cells (e.g. Z3, BCC and HS), and this will lead to a lattice indicatrix that will
divide the sphere into regions of equal area, hence giving a rational writhe. If the vertex
figure is not regular but its lattice indicatrix divides the sphere into two or more sets of regions
with areas being a rational multiple of π , then the writhe would still be rational. Otherwise
some polygons will have irrational writhe. In addition, combining previous work (Garcia
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et al 1999, Lacher and Sumners 1991) with results from this paper we can see that the vertex
transitive property is neither necessary nor sufficient for the rationality of the writhe. We
have examples of rational writhe and vertex transitivity (Z3), irrational writhe and vertex
transitivity (FCC), rational writhe and vertex intransitivity (D) and irrational writhe and vertex
intransitivity (HCP).

It would be useful to complete the full list of writhe formulae for every lattice and space
group. Another problem that should be considered is polygons living in the union of two or
more lattices or space groups. If one considers a configuration requiring two or more lattices
(or space groups), then the lattice indicatrix of such a configuration would be the union of two
or more lattice indicatrices. Another remark is that not every polymer can be represented as a
closed curve; there are linear and branched polymers that can be entangled, so it is important
to generalize the writhe formula for linear and branched complexes on lattices or space groups
(Orlandini et al 1993). Important special cases are the calculation of writhe of biopolymers
like DNA, RNA and proteins.

Finally, an intriguing geometric problem is to consider the possibility of a duality between
lattice spaces and their lattice indicatrices; it would be interesting to explore the geometric
relations that both structures can have, and explore possible dual results between lattice theory
and spherical geometry.
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